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The evolution of a vertically propagating vortex pair in stratified and sheared en-
vironments is studied with a two-dimensional numerical model. We consider a range
of Froude (Fr) and Richardson (Ri) numbers, and a limited number of Reynolds
numbers (Re). We find that stratification causes the formation of counter-sign vorticity
around each of the original vortices through baroclinic production. At higher Fr,
this wake vorticity advects the primary vortices closer together, decreasing their
separation distance and increasing their vertical propagation speed, as predicted by
Crow (1974) and Scorer & Davenport (1970). For these higher values of Fr, the
wake vorticity also participates in an instability of the primary vortex pair, with
the direction of propagation of the pair oscillating about the vertical. We term
this instability the vortex head instability to distinguish it from the jet instabilities
to which the wake itself is also susceptible. At lower Fr, internal gravity wave
radiation dominates, and the intensity and spatial coherence of each vortex is rapidly
reduced.

When a mean horizontal flow having constant shear is present in an unstratified
fluid, we find that the vortices eventually rotate about one another with the same
rotational sense as the background shear flow, as predicted in Lissaman et al. (1973).
When stratification is also present, we find that the distribution of baroclinically
generated wake vorticity is asymmetric, which sometimes leads to the emergence of
a solitary vortex with the same sign as the background shear vorticity (depending on
the values of Fr, Ri, and Re). Our limited survey of parameter space indicates that a
solitary vortex emerges more rapidly for smaller values of Ri, smaller values of Fr,
and/or larger values of Re.

1. Introduction
The evolution of vortex pairs is a problem of longstanding interest. A com-

mon example is the trailing vortices which form behind an aircraft due to its lift;
these vortices pose a considerable hazard to other aircraft (Olsen, Goldburg &
Rogers 1971). Other examples of vortex pairs are found within thermal plumes
(Rast 1997) and rising bubbles (Longcope, Fisher & Arendt 1996), as well as
within convective instabilities such as those occurring in a breaking gravity wave
(e.g. Andreassen et al. 1994), and fully developed turbulence (Rogers & Moin
1987).

For a fluid without density stratification or environmental shear, some work
(Pierrehumbert 1980) has been done in two dimensions, but much interest has



190 J. F. Garten, S. Arendt, D. C. Fritts and J. Werne

focused on three-dimensional aspects, principally because the vortices undergo a
three-dimensional instability known as the Crow instability (Crow 1970). This long-
wavelength instability also has a short-wavelength counterpart (Tsai & Widnall 1976;
Moore & Saffman 1975) which is related to zero-frequency Kelvin twist waves (e.g.
Saffman 1992), but which generally has a smaller growth rate than the long-wavelength
instability.

When density stratification is present, buoyancy complicates the flow, and so most
work has been limited to two dimensions. Turner (1960) studied a buoyant vortex pair
in a constant-density fluid while Scorer & Davenport (1970), Saffman (1972), Crow
(1974), and Hill (1975) studied various aspects of the evolution of a vortex pair in a
stratified fluid. Recent experimental work includes Tomassian (1979), Delisi, Robins
& Lucas (1991), and Sarpkaya (1983). Recent numerical work includes Jaderberg
(1980), Robins & Delisi (1990), Schilling, Siano & Etling (1996), Spalart (1996),
and Garten (1997); the last three works show that weak density stratification acts
to decrease the vortex pair’s separation distance while increasing its propagation
velocity, consistent with the predictions of Crow (1974) and Scorer & Davenport
(1970). These conclusions appear to be in conflict with experimental results, which
do not find acceleration of the vortex pair (except for Tomassian 1979 who finds
weak acceleration). This discrepancy is perhaps due to constraints on the value of the
Reynolds number in the numerical simulations, and the accompanying restriction to
laminar flows. Aspects of the effects of ambient turbulence on the evolution of vortex
pairs have been addressed by Crow & Bate (1976), Hecht, Bilanin & Hirsh (1981),
and Greene (1986).

At later times in the flow evolution, the vortex pair ceases its usual propagation
because of influences of its baroclinically generated wake and attrition by viscous
diffusion. Schilling et al. (1996) observed a wriggling of the vortex pair, an effect which
we also find and which we call the vortex head instability. This instability results in
a growing oscillation of the vortex pair propagation direction about the vertical, and
in the development of coherent structures near the maximum height attained by the
vortex pair. We find that the baroclinically generated wake of the vortex pair is also
susceptible to a jet instability which results in greater complexity of the late-time flow.
Other authors who study the evolution of vortex pairs in an incompressible fluid
have not observed these instabilities, either because of enforced symmetry in their
numerical studies, as in the case of Spalart (1996), or because of a lack of seeding
with perturbations to excite the instabilities, as in the case of Robins & Delisi (1990).
However, the compressible plume studies by Rast (1997) also exhibit the asymmetric
evolution we report here.

The report by Lissaman et al. (1973) contains a summary of the predicted effects of
horizontal shear (with uniform vorticity) on vertically propagating two-dimensional
vortex pairs in an unstratified fluid. Owing to the background shear, the re-circulation
cells of the two vortices are asymmetric; specifically, the re-circulation cell of the
opposite-sign vortex (i.e. the vortex with a sign of vorticity opposite that of the
background shear vorticity) is smaller than the re-circulation cell of the same-sign
vortex. When the vortices diffuse outwards sufficiently, some of the vorticity from the
opposite-sign vortex is detrained (i.e. left behind) by the vortex pair, and the vortex
pair consequently rotates with the same rotational sense as the background shear flow.
Burnham (1972) and Harvey & Perry (1971) also considered this problem, but with a
non-uniform shear. Robins & Delisi (1990) presented numerical simulations of two-
dimensional vortex pairs in an environment that was both stratified and uniformly
sheared. The results summarized in their figure 13 indicate that for certain Froude
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(Fr) and Richardson (Ri) numbers, a solitary vortex emerges† possessing the same
sign as the background shear vorticity.

The present paper presents two-dimensional simulations of vortex pairs in stratified
and sheared environments. Our purpose is to examine the underlying physical pro-
cesses controlling the dynamics of such vortex pairs, in particular the interaction of
the vortex pair with the vorticity in its baroclinically generated wake. Of particular in-
terest are the theories formulated by Saffman (1972) and Crow (1974) that predict the
time evolution of the separation distance and the vertical position of the vortex pair.
One of the assumptions of Saffman’s model is that the separation distance between
the vortices remains constant as the flow evolves; we find that this is only true during
an early adjustment phase. Once the flow is mature, the evolution of vortex pairs
at higher Froude numbers (stronger inertial forces relative to buoyancy forces) is in
qualitative agreement with Crow’s theory. Even in the lower Froude number regime,
we find that the separation distance does not remain constant, but rather increases
with time. Finally, neither theory predicts the late-time viscous behaviour, something
which is of concern for numerical simulations as these are necessarily constrained to
lower values of the Reynolds number.

The paper is organized as follows. In § 2, we discuss the numerical model and its
limitations. In § 3, we address the effects of stratification on a vertically propagating,
counter-rotating vortex pair by examining a range from weak to strong stratification,
and we compare our results to the predictions of the Crow and Saffman theories. In § 4,
we investigate the consequences of seeding the initial flow field with perturbations, and
we discuss two distinct instabilities. In § 5, we consider the effects of an environmental
shear on the evolution of vortex pairs, and discuss the effect of stratification on the
emergence of a single vortex. Finally, we summarize our main conclusions in § 6.

2. Numerical model
2.1. Basic equations and numerical method

We use a numerical model based on the Boussinesq approximation to the two-
dimensional Navier-Stokes equations. The full density (ρ̃ = ρ̄ + ρ) and temperature
(T̃ = T̄ + T ) are expanded in terms of horizontal mean (overbar) and perturbation
quantities.‡ The equation of state that relates the two fields is

ρ

ρ0

= −αT , (2.1)

where α is the thermal expansion coefficient and ρ0 is a reference value.
The background temperature is T = βz so that the buoyancy frequency N is given

by N2 = gαβ, where g is the acceleration due to gravity. The equations of motion
(the non-dimensionalization will be discussed in the next section) are then

∇ · v = 0, (2.2)

∂v

∂t
+ ω × v = −∇π +

T

Fr2
ẑ +

1

Re
∇2v, (2.3)

∂T

∂t
+ (v · ∇)(T̄ + T ) =

1

Re Pr
∇2T , (2.4)

† Robins & Delisi define a solitary vortex emerging as one vortex being 40% stronger than the
other.
‡ The model also permits unstratified simulations for comparison to the stratified and sheared

cases.
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where v = (0, v, w) is the velocity, ω = ∇ × v = (ωx, 0, 0) is the vorticity, π is the
dynamic pressure head, and Re and Pr are the Reynolds and Prandtl numbers to be
defined in § 2.2.†

We use a pseudo-spectral, stream-function/vorticity, Galerkin method (Canuto et
al. 1988) to solve (2.2)–(2.4), representing the field variables with Fourier polynomials
of the form

A(y, z, t) =

Ny/2∑
m=−Ny/2

Nz/2∑
n=−Nz/2

Âmn(t) exp

[
2πi

(
my

Ly

)]
exp

[
2πi

(
nz

Lz

)]
, (2.5)

where Ny and Nz are the number of collocation points in the y- and z-directions, and
Ly and Lz are the domain lengths. Dealiasing with the 2/3 rule is used in all spatial
directions (Canuto et al. 1988).

Differentiations are accomplished with multiplications by k-vectors in Fourier space
so that the velocity components v and w are related to ωx through

v̂mn = i
kz

k2
ω̂mn, ŵmn = −i

ky

k2
ω̂mn, (2.6)

where ky = 2πm/Ly , kz = 2πn/Lz , and k2 = k2
y + k2

z . Taking the curl of (2.3), the
evolution equation for ωx is

∂ωx

∂t
= −∇ · (vωx) +

1

Fr2

∂T

∂y
+

1

Re
∇2ωx. (2.7)

Solutions are obtained by time-advancing (2.4) and (2.7).
We use a hybrid implicit/explicit third-order Runga–Kutta scheme developed by

Spalart, Moser & Rogers (1991) to time-advance the variables. Diffusive and buoy-
ancy terms are handled implicitly in spectral space, while nonlinear terms are treated
explicitly in physical space, then projected to Fourier space using fast Fourier trans-
forms (FFTs). The timestep δt is variable, selected in accord with the maximum
velocity/grid-spacing ratio U = max|u/δr| (u is one component of the flow velocity
and δr the grid spacing parallel to that velocity) and the Courant–Friedrichs–Lewy
(CFL) condition, δt =CFL/U. We typically use values of CFL between 0.65 and 0.70
(for the full, three-level Runge–Kutta timestep).

In many of our solutions, resolution requirements are time-dependent, increasing
(or decreasing) by a factor of four or more during the flow evolution. Interpolation (or
deterpolation) of field variables allows for frugality with finite numerical resources,
and is accomplished by expressing the field variables in Fourier space and adding
zeros for the coefficients of the new, higher-wavenumber modes (or simply zeroing
coefficients above the new highest wavenumber).

The boundary conditions in either direction may be chosen to be either periodic
or stress-free with zero normal velocity. In all of our unsheared cases, the boundary
conditions are periodic in both directions, while in the sheared cases, the horizontal
boundary condition is periodic and the vertical is stress-free. This is necessary to
accommodate the vertical distribution of horizontal shear velocity, which is of uniform
slope for the middle 75% of the domain, and tails off to constant values near the
vertical boundaries. For these sheared calculations, the vortex pairs remain within
the inner region throughout their evolution (they are never within 3b0 of the outer

† Note that together (2.1) and (2.4) imply direct diffusion of density, a disquieting notion which
is nevertheless an inherent feature of the Boussinesq approximation.
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regions), and the entire shear velocity distribution remains constant within less than
0.01% during the simulation.

With periodic horizontal boundaries, the simulations differ from the ideal case of
infinite horizontal extent. In particular, image vortices are present in the simulations,
and these contribute to the vertical velocity of the primary vortex pair, reducing it
below the value for an infinite domain. For the domain widths we use here, 6b0,
8b0, and 12b0, the initial rise velocity of the vortex pair, in normalized units, is then
0.909, 0.949, and 0.977, respectively, and not 1.0, as would be the case for infinite
horizontal extent. The differences, though small, will be important when comparing
to theoretical predictions.

2.2. Initial conditions and non-dimensionalizations

To model a counter-rotating vortex pair, we use Gaussian distributions of vorticity,
with motion confined to the (y, z)-plane. The only non-zero component of the vorticity,
ω, is ωx, and its initial distribution is given by

ωx(y, z, t= 0) = ω0 exp

(
−((y− y1)

2 + (z − z1)
2)

2σ2

)
−ω0 exp

(
−((y− y2)

2 + (z− z2)
2)

2σ2

)
,

(2.8)

where ω0 is the peak magnitude of vorticity for each vortex, σ is a vortex core size,
and (y1, z1) and (y2, z2) are the initial coordinates of the two vortices. For our purposes
here, y1 < y2 (y2 − y1 = b0, the initial vortex core separation distance), z1 = z2, and
ω0 > 0 so that the vortex pair propagates upwards.

Taking the flow to satisfy ∇ · v = 0, we find the initial velocity distribution from
(2.2) and ω = ∇× v:

v(y, z, t = 0) = − σ2ω0(z − z1)

(y − y1)2 + (z − z1)2
(1− e−((y−y1)2+(z−z1)2)/2σ2

)

+
σ2ω0(z − z2)

(y − y2)2 + (z − z2)2
(1− e−((y−y2)2+(z−z2)2)/2σ2

),

w(y, z, t = 0) =
σ2ω0(y − y1)

(y − y1)2 + (z − z1)2
(1− e−((y−y1)2+(z−z1)2)/2σ2

)

− σ2ω0(y − y2)

(y − y2)2 + (z − z2)2
(1− e−((y−y2)2+(z−z2)2)/2σ2

).


(2.9)

All of our simulations are performed with a non-dimensional set of equations.
Length, velocity, and temperature are reported in units of b0, W0 and β, where W0 is
the magnitude of the initial vertical induced velocity and β is the background temper-
ature gradient. Other quantities are measured in units resulting from combinations of
these three variables; e.g. time is reported in units of b0/W0. Important combinations
of these and other parameters form non-dimensional quantities which we will use to
characterize our solutions. These include Fr, Re, Pr (Prandtl number), and Ri, which
are described below.
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The Froude number is defined as

Fr =
W0

Nb0

, (2.10)

where N is the buoyancy frequency of the background stratification. Hence, Fr is
the ratio of the buoyancy time scale to the vortex-pair advection time scale. In the
nonlinear regime (Fr > 1) the advective effect of each vortex on the other is greater
than buoyancy effects, while in the linear regime (Fr < 1) the opposite is true. The
labels linear and nonlinear refer to the nature of the underlying flow equations in
these regimes. From (2.9) and (2.10), we have

|ω0| = FrN
b2

0

σ2

(
1− e−b

2
0
/2σ2
)−1

. (2.11)

Hence, the initial velocity distribution is specified in terms of Fr, N, b0, and σ.
The Reynolds number,

Re =
W0b0

ν
, (2.12)

is the ratio of the advective time scale (b0/W0) to the viscous time scale (b2
0/ν), where

ν is the coefficient of kinematic viscosity. In the literature, the Reynolds number is
often defined in terms of the circulation, Γ = 2πW0b0, so that Re′ = Γ/ν = 2πRe.
Therefore, to compare our solutions with these, our Re should be multiplied by 2π.
The number of grid points used limits the value of Re that can be attained numerically.
In order to investigate the implications of the constraint on Re, we have performed
unstratified simulations at Re = 1000 and at Re = 1500. We find, for example, that
the time taken to travel 15 vortex-pair separation distances decreases by only about
1% at the higher Re. From this, it is tempting to conclude that increasing Re beyond
1500 will not significantly affect the results. However, this is not necessarily true, as
we will discuss throughout the paper.

The Richardson number, Ri, characterizes the background shear flow. It is equiva-
lent to the square of the ratio of the shear time scale (∂V/∂z)−1 to the buoyancy time
scale N−1:

Ri =
N2

(∂V/∂z)2
, (2.13)

where V is the horizontal flow due to the the mean shear. Ri = ∞ corresponds to the
case in which there is no mean shear flow present.

The Prandtl number, Pr = ν/κ, is the ratio of the diffusive time scale (b2
0/κ) to the

viscous time scale (b2
0/ν). The value of Pr determines how quickly thermal gradients

diffuse relative to velocity gradients. For all of the simulations reported here, Pr = 1.
For most of our simulations, the vortex core size is chosen to be σ = b0/8; for

this choice, the vortices are small enough to be distinct entities but large enough
to be adequately resolved in the computation. The vortices are initially placed sym-
metrically about the centre of the domain. To prevent significant interaction with
image vortices (which arise due to the boundary conditions), the horizontal width of
the computational domain Ly is made large compared to b0; specifically we choose
Ly = 6b0 for the high-Fr unsheared cases and even greater widths for the low-Fr
and sheared cases. The depth of the computational domain depends on the specific
needs of each numerical simulation; neither the vortex pair nor its wake are allowed
to come within 2b0 of the top or bottom of the computational domain.

In § 4, we discuss instabilities of the evolving flow field. Perturbations are required
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to excite these instabilities. Seeding with random or ‘white’ noise is not very effective,
as such noise is largely viscously damped out before having any substantial effect on
the flow. Instead, a weak but coherent perturbation flow given by

vp = 0.01

2Nz/3∑
n=1

n−5/3 sin(2πnz/Lz), (2.14)

wp = 0.01

2Ny/3∑
m=1

m−5/3 sin(2πmy/Ly) (2.15)

is added to the initial conditions. Note that the noise variance decreases with
wavenumber and that the perturbation has components that are antisymmetric about
the centreline between the two vortices.

2.3. Numerical resolution

For simulations of turbulent flows, a typical measure of numerical resolution quality
(Henshaw, Kreiss & Reyna 1989) is the ratio of the grid spacing to the Kolmogorov (or
dissipation) scale, `K (Kolmogorov 1941). When temperature stratification is present,
resolution of features in the temperature must also be considered. For large Pr, `K
is no longer the smallest scale of the flow, and should be replaced in the resolution
criterion by the Batchelor scale, `B = Pr1/2`K (Batchelor 1959; Werne 1993). Though
these criteria prove useful when resolution requirements are constrained by turbulence,
they do not apply to flows dominated by thin laminar structures. Unfortunately, this
is the case for the simulations we present here.

The thin laminar features are caused by the presence of the density stratification and
the advection of the density by the flow field. In the constant-density case (Fr → ∞),
the resolution needs for our vortex pair are maximum at the initial time, and the initial
resolution (assuming the initial fields are resolved) is adequate throughout the entire
simulation, and can even be decreased as viscous processes diffuse the vortex cores.
In the other limit (Fr → 0), the resolution needs are again maximum at the initial
time, since the flow becomes linear and is dominated by internal waves. However,
for intermediate values of Fr, the resolution requirements are not maximum at the
initial time. As a vortex pair rises, a plume forms, consisting of the fluid advected
by the vortex pair. For intermediate values of Fr (Fr ∼ 1), this plume becomes
internally well-mixed more rapidly than its boundaries diffuse (see e.g. figure 2).
Sharp horizontal gradients in the temperature field form with scales smaller than the
initial flow scales, so that the resolution needs increase. Even after these horizontal
gradients begin to diffuse, the resolution needs do not necessarily decrease or even
level off. As the vortex pair propagates to even greater heights, sharp vertical thermal
gradients develop which again have an impact on the resolution requirements.

Spalart (1996) has proposed quantifying the resolution needs in terms of the length
scale of the internal density layers formed by the initial strain at the stagnation points
of the vortex pair. In so doing, Spalart implicitly hits upon the critical aspect limiting
the resolvability of these simulations, i.e. sharp but laminar density gradients. We feel
Spalart’s resolution estimates must be refined before they are useable. For example,
the criterion does not account for the time-varying (increasing) resolution needs we
observe in our solutions, and also lacks the Fr-dependence that we would expect.
However, it is possible that the strain rate could be used to judge the resolution
requirements if it were computed as the flow evolves. Although the Fr and Re
dependencies which are missing from the criteria might then be found in the time-
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dependent strain rate, even this method would miss the increasing need for horizontal
resolution that we observe in our solutions.

Lacking a reliable method for determining the quality of resolution of our solutions,
we have fallen back on the method of looking for Gibbs’ oscillations and/or numerical
ringing throughout the flow evolutions. For example, very slight ringing is evident in
figure 17 (d) (near (y, z) = (2.5, 1.5)) in the temperature for a simulation with Fr = 2,
Ri = 1, and Re = 1000. The run shown in Fig. 17 (d) is the least resolved of all
the calculations we present here, and all of the other calculations show little sign of
numerical ringing (see e.g. figure 2).

3. Stratification effects
In this section, we examine the effects of stable stratification on counter-rotating

Gaussian vortex pairs. The stable stratification results in the formation of counter-
sign vorticity which plays a crucial role in the resulting dynamics and subsequent
evolution of the flow.

3.1. Review of theory

The results of our numerical simulations will be compared to two theories which
appear to be contradictory and even mutually exclusive. We provide a brief description
of each of these theories, paying particular attention to the assumptions and resulting
limitations of each.

3.1.1. Saffman’s theory

Saffman’s (1972) model for the motion of a two-dimensional vortex pair in a
stratified fluid applies the concept of impulse to an inhomogeneous fluid where the
density differences are small. The key assumptions of this inviscid model are that the
distance between the vortices and the area of fluid carried with the vortices remain
constant, and that the variations of external density near the vortex pair are negligible.

According to this model, the vertical velocity of the vortex pair, W = dZ/dt,
satisfies the equation

d

dt
[(cρ̄(Z) + ρ̄(0))W ] = [ρ̄(Z)− ρ̄(0)]g, (3.1)

where ρ̄(Z) is the background density stratification, ρ̄(0) is the density at the starting
level, and c is a shape factor which Saffman estimates to be 1.2 for small core
sizes. This equation reflects the basic physics: the vortex pair starts with an initial
momentum which is decreased by the gravitational force. The details (e.g. where
exactly in the flow the momentum is lost) are ignored.

In the case of uniform stratification, ρ̄(Z) = ρ̄(0)(1 − ZN2/g), the model has a
particularly interesting result. The small values of N which are of typical interest
allow the replacement of ρ̄(Z) by ρ̄(0) on the left-hand side of (3.1), and the equation
of motion for the vortex pair is then

d2Z

dt2
+

N2

1 + c
Z = 0. (3.2)

With Z(0) = 0 and W (0) = W0 the solution is then

Z =
W0

Ω
sin(Ωt), Ω =

N

(1 + c)1/2
. (3.3)
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Thus, Saffman’s model predicts that a vortex pair in uniform stratification will oscillate
about its initial vertical position with an amplitude of |W0/Ω| and period 2π/Ω. To
put this result in perspective, recall that a pair of counter-rotating vortices without
density stratification will self-advect in a straight line at a constant speed, apart from
viscous dissipation and advective core deformation.

Although Saffman admits that under normal circumstances three-dimensional pro-
cesses (i.e. the Crow instability) occur too rapidly for this oscillation to be observed,
he leaves open the possibility that it could be observed when stability is locally strong.
We are unaware of any numerical results that confirm the undamped oscillation pre-
dicted by this model, but the numerical results we present below show that Saffman’s
model applies within an early adjustment phase of the vortex pair’s evolution.

3.1.2. Crow’s theory

Crow’s (1974) model relies on a deeper understanding of the intricate consequences
of buoyancy. Buoyancy results in the formation of secondary, baroclinically generated
regions of vorticity, which then interact with the primary (original) vortex pair.
The key assumptions of Crow’s model are that the circulation of each primary
vortex remains largely fixed, the stratification is weak, the secondary (baroclinically
generated) vorticity is overwhelmingly detrained from the primary vortices, and the
flow is considered to be mature and quasi-steady. By mature, we mean that wake
vorticity, which is initially zero, has had time to build up. In what follows, we review
Crow’s model (following Spalart 1996).

As a counter-rotating vortex pair rises in a stratified fluid (ρ̄(Z) = ρ̄(0)(1−ZN2/g),
as above), density gradients increase at the boundary between the fluid elevated
(depressed) by the vortex pair and the surrounding fluid. These density gradients
result in the formation of opposite-sign vorticity; negative vorticity is formed to the
left of the positive primary vortex and positive vorticity is formed to the right of the
negative primary vortex. The greater the vertical displacement of the vortex pair from
its starting point, the larger the amount of secondary vorticity that is formed. The
buoyant creation of secondary vortex circulation (±Γ2) is of order N2bZ , where b is
the time-dependent vortex separation distance.

While this secondary vorticity is continually created, it is also largely detrained by
the motion of the primary vortex pair. The detrained vorticity results in the formation
of long thin vortex sheets which stretch from the vortex pair to beyond their initial
position. The change in the secondary vortex circulation due to the detrainment is
of order Γ1Γ2/b

2 where Γ1 is the primary vortex circulation. The buoyant creation
and the subsequent detrainment dominate the evolution of the secondary vorticity.
Assuming a steady flow, we equate the two to find

Γ2 = C1

b3N2Z

Γ1

, (3.4)

where we have adopted the notation for C1 (and C2 and C to follow shortly) used by
Spalart (1996).

Now, consider the motion of the primary vortices. To leading order, the vortex-pair
rise velocity is given by

dZ

dt
=

Γ1

2πb
. (3.5)

The secondary regions of vorticity are more concentrated below the primary vortices
than above, and so they advect the primary vortices inwards. To leading order, the
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separation distance of the primary vortices varies as

db

dt
= C2

Γ2

b
. (3.6)

Assuming that Γ1 is constant, (3.4)–(3.6) may be solved to find

Z =
Γ1

(2πC)1/2Nb0

sinh

((
C

2π

)1/2

Nt

)
, b =

b0

cosh

((
C

2π

)1/2

Nt

) ,
Γ2 =

b3NΓ1C1

(2πC)1/2b0Γ1

sinh

((
C

2π

)
Nt

)
, (3.7)

where C = C1C2. The constant C has been calculated separately by Scorer &
Davenport (1970), Spalart (1996), and apparently Crow (referred to by Spalart). For
the purposes of comparison with our numerical results we will use the value C = 2.85
(Saffman 1972).

In summary, Crow’s model predicts that a vortex pair in stratification will drift
together and accelerate exponentially as its separation distance decreases. The sec-
ondary baroclinically generated vorticity is largely detrained from the primary vortex
pair, and causes the inward drift of the primary vortices. Crow’s model is inviscid;
in a viscous fluid, the continual decrease of the separation distance will eventually
lead the primary vortices to diffuse into each another, after which the model no
longer applies. Crow’s model has previously shown good agreement with numerical
simulation results (Spalart 1996); in the next section, we show that our results agree
qualitatively with Crow’s model after an initial adjustment phase.

3.2. Flows dominated by advection

We begin our discussion of specific examples with the nonlinear regime, wherein
advective processes are somewhat more important than buoyant processes. We will
compare the results of the simulations to the predictions of the theories, and examine
the consequences of varying Fr and/or Re.

3.2.1. Upwards-propagating vortex pair at Fr = 2

We first consider an upwards-propagating vortex pair with Fr = 2 and Re = 1000
(note that the comparable Reynolds number defined with the circulation is 6283).
The computational domain size for this simulation is 6b0 × 18b0, while the resolution
needs maximize at 512× 1536 Fourier modes.

Contours of vorticity detailing the early evolution of the vortex pair are displayed
in figure 1. This plot, as well as many subsequent plots, contain only the most relevant
part of the computational domain. The primary vortices advect one another upwards,
while secondary regions of baroclinically generated vorticity (see below) form and
grow. The secondary vorticity is largely left behind by the primary vortices, and
concentrates in the region to the side of and just behind the primary vortices (see
e.g. t = 3). As discussed in the summary of Crow’s theory, these secondary regions
of vorticity advect the primary vortices together (see e.g. t = 4); the primary vortices
then accelerate upwards.

Contours of the density are shown in the left-hand panels of figure 2. Apart from
the diffusive effects in (2.4), the density is a conserved scalar of the flow, and its
contours provide a sense of the flow’s history. In particular, they show that relatively
heavier fluid is entrained by the vortex pair and carried upwards. By t = 4, this region
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Figure 1. Contours of vorticity for an upwards-propagating vortex pair having Fr = 2 and
Re = 1000. Contour levels at ±10,±20,±30, etc. show the distribution of high-magnitude vorticity,
principally the original vortex pair. Contour levels at ±2,±3,±4 and± 5 illustrate the distribution
of low-magnitude vorticity, principally the baroclinically generated wake. All regions enclosed by
negative contours are shaded.

of fluid is internally well mixed, but its boundaries have sharp gradients (note the
large density gradients both at the stagnation point at the leading edge of the pair
and to either side of the pair). As discussed in § 2.3, numerical noise appears here
if the resolution is not increased sufficiently. At later times (not shown here), fluid
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initially displaced upwards collapses back downwards due to buoyancy, particularly
at the level of excitation of the vortex pair, and overshoots its original position.

To understand the evolution of the flow more fully, it is useful to consider the
vorticity equation, which is

∂ωx

∂t
= −∇ · (vωx) +

1

Fr2

∂T

∂y
+

1

Re
∇2ωx. (3.8)

The first term on the right-hand side of this equation is the advection term (through
which vorticity is advected as a scalar by the flow), the second is the baroclinic
production term (through which vorticity is created by density gradients), and the
third is the viscous diffusion term.

Consider the baroclinic production term, which is the cross-product of the hori-
zontal density gradient (due to the upwards/downwards advection of relatively heav-
ier/lighter fluid) with the background pressure gradient (contained within N in Fr).
This term represents the vorticity created by the torque of the buoyancy force acting on
fluid having a horizontal density gradient. From the perspective of vorticity dynamics,
this term contains all buoyancy effects, and so the subsequent effects due to baroclin-
ically generated vorticity may alternatively be viewed as being due to buoyancy.

To see that the secondary regions of vorticity in figure 1 arise from baroclinic
production, contours of the baroclinic source are shown in the right-hand panels of
figure 2. Since density maxima occur at the centres of the vortices, negative/positive
vorticity forms to the left/right of each vortex. Additional counter-sign vorticity forms
behind the vortices due to the density perturbations at those locations.

By t ' 3, the baroclinically generated sheets of vorticity begin to have significant
advective effects on the primary vortices (see figure 1). As described in the summary
of Crow’s theory, the clockwise flow induced by the secondary region of negative
vorticity to the left of and below the positive primary vortex advects the positive
primary vortex towards the negative primary vortex. In the same manner, the negative
primary vortex is advected towards the positive primary vortex. The primary vortices
accelerate dramatically as their separation decreases.

Contours of vorticity at more advanced times are shown in figure 3. The vortex
pair continues to advect upwards, and the baroclinic production of vorticity results
in two long slender vortex sheets extending from the vortex pair to its initial position.
Physically, the vertical jet of fluid described by these vortex sheets is due to the
buoyancy of the fluid displaced by the vortex pair’s advection and entrainment;
upwards-displaced fluid rebounds back downwards due to buoyancy. This jet of fluid
is also susceptible to an instability which we will discuss in § 4.2.

Finally, near the initial position of the vortex pair, heavier fluid that has escaped the
influence of the vortices descends and overshoots this position. A new baroclinically
generated semi-coherent vortex pair forms at t ' 6 near the initial position of the
primary vortex pair, and creates its own baroclinically generated wake (e.g. t = 12 of
figure 3). By t ' 12, this fluid is again moving upwards due to buoyancy, and what
is left of these secondary vortices interacts and dissipates. This process continues,
growing weaker in time, until all of the energy is propagated away as internal waves
or viscously dissipated.

3.2.2. Consequences of changing Fr, Re, or σ/b0.

We now consider the consequences of varying some of the parameters, beginning
with the implications of increasing Re. The advantage in increasing Re is that the flow
then approximates real-world flows more closely, while the disadvantage is that the
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Figure 2. Contours of the density (left-hand column) and the baroclinic source of vorticity
(right-hand column) for an upwards-propagating vortex pair having Fr = 2 and Re = 1000.
Density contours are at intervals of 0.259, while the contours of the baroclinic source are shown at
±2,±3,±4 and ±5. Regions enclosed by negative contours are shaded.
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Figure 3. For caption see facing page.

required numerical resolution increases. For intermediate values of Fr, the resolution
needs in each spatial direction increase by more than a factor of Re1/2, a factor used
in numerical simulations of turbulent flows.

Contours of vorticity summarizing the evolution of a vortex pair with Fr = 2 and
Re = 1500 are displayed in figure 4. The resolution needs for this simulation maximize
at 1024 × 3072 spectral modes; in this situation, roughly twice as many modes are
required in each spatial direction to raise Re by only 50%. On the whole, the results of
this numerical simulation are very similar to those of the first. The density gradients
are somewhat sharper, and so the baroclinically generated vorticity is concentrated
into thinner sheets (t = 3, 4). The more strongly concentrated vorticity sheets still form
a semi-coherent vortex pair at their head, and this pair propagates slightly farther
(t = 6) at this higher Re. Upon close inspection, the primary vortices retain more of
their original circulation for longer times, and so also propagate farther.
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Figure 3. As in figure 1, but for more advanced times in the flow.

The vertical positions and separation distances of the vortex pairs at the two
different values of Re are compared with the predictions of the Saffman and Crow
theories in figure 5. The character of the motion for the two values of Re is very
similar. The early behaviour follows the prediction of Saffman’s theory at both values
of Re; note that the separation distance remains fixed during this early time. After
this initial adjustment phase, the character of the curves follows Crow’s prediction.
Crow’s theory assumes that the flow is mature, so this delay is not surprising. Also,
we have observed that vortex pairs with Fr > 2 have an initial adjustment period
that lasts about 2 advective time units, τ ' 2b0/W0. A similar time shift is present in
the results of Spalart (1996). A lower value of Re does not appear to delay the onset
of the acceleration phase of the vortex pair, but it does result in the vortex pair not
accelerating as quickly or propagating as far as at higher Re.

Next, consider the implications of changing Fr. The vertical positions and separa-
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Figure 4. As in figure 1, but for the flow of an upwards-propagating vortex pair having
Fr = 2 and Re = 1500.

tion distances of vortex pairs with different Fr but all with Re = 1000 are shown in
figure 6, where we use re-normalized heights and times as shown. During an initial
adjustment phase, which lasts roughly 2 advective time units independent of Fr, the
separation distance remains fixed, and even slightly increases for the smaller values of
Fr. As a constant separation distance is one of the assumptions of Saffman’s theory,
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pairs with Fr = 2 and Re = 1000 and Re = 1500. The curves are compared to the expectations of
the Saffman and Crow models.

it is not surprising that the vertical position follows Saffman’s prediction during this
adjustment phase.

After the adjustment phase (a different value of Nt for each Fr), the vortex pairs
enter the acceleration phase, with a character predicted qualitatively by Crow’s theory.
Although Crow’s theory was not intended to apply to Froude numbers as low as
Fr = 1, it is interesting to note that the Fr = 1 vertical position does display
acceleration. Although the agreement with Crow’s predictions is better for higher Fr,
this is only a consequence of the adjustment time being smaller.

Each of the vortex pairs then enters a viscous phase, where the acceleration (and
also the vertical propagation) is halted at late times because diffusion decreases the
circulation of the primary vortices. Crow’s theory is inviscid, and so cannot predict
what happens once this phase begins. The time scale on which this phase begins
appears to be independent of Fr, so for example the Fr = 8 curve agrees less well
with theory at later Nt than the Fr = 4 curve, because the diffusion phase for Fr = 8
occurs earlier in Nt units. The limitation on the duration of the acceleration phase is
the fact that b(t) cannot decrease indefinitely; eventually the primary vortices come
close to one another and diffuse rapidly.

3.2.3. Viscous limit on the propagation of vortex pairs

Since the separation distance of the vortex pair decreases with time, and since each
vortex simultaneously diffuses outwards, the vortices eventually come into contact
and diffuse into one another, ending their acceleration phase. By calculating when
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the viscous phase begins, we can construct a rough upper limit for the total distance
propagated by the vortex pair during the acceleration phase.

First, consider the outwards diffusion of each vortex. In the absence of other effects,
a Gaussian vortex will self-similarly diffuse. That is, its core size will increase with
time, but its total circulation and Gaussian shape will be preserved. To solve for the
core size as a function of time, let ω = Ω(t)e−ρ

2/2σ(t)2

describe a solitary vortex of fixed
circulation 2πΩ(0)σ(0)2. In the absence of other effects, the vorticity equation becomes

∂ω

∂t
=

1

Re
∇2ω. (3.9)

This equation can be solved straightforwardly (e.g. see Lamb 1945) to yield

σ(t) =

[
σ(0)2 +

2

Re
t

]1/2

. (3.10)

This solution gives a prediction for the behaviour of the vortices’ core size in our
simulations. The prediction is somewhat approximate as other effects lead the vortices
into slightly non-Gaussian shapes (see e.g. figure 1).

The behaviour of the separation distance with time is found by combining the
prediction of Crow’s theory with our empirical observation of an adjustment phase
of 2 advective time units. The prediction for the separation distance is then

b(t) =
b0

cosh((C/2π)1/2N(t− 2))
(t > 2). (3.11)
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Re

Fr 1000 1500 3000 10 000 50 000

1 4.58 4.77 5.05 5.27 5.34
2 6.83 7.33 7.98 8.59 8.87

σ(0)/b0 = 0.125 4 10.5 11.7 13.3 15.1 15.8
8 16.1 18.3 21.9 26.7 29.6

16 23.6 27.9 35.5 47.0 55.6

1 6.12 6.87 8.22 10.8 12.8
2 8.92 10.2 12.8 17.8 23.0

σ(0)/b0 = 0.04 4 13.1 15.1 19.5 28.6 40.8
8 19.0 22.5 29.8 45.7 71.6

16 26.9 32.7 44.3 71.2 121.0

1 6.43 7.35 9.36 14.6 25.9
2 9.26 10.8 14.0 22.3 40.8

σ(0)/b0 = 0.01 4 13.5 15.8 20.8 33.6 63.4
8 19.3 23.1 30.9 50.5 97.4

16 27.3 33.2 45.5 75.9 148.0

Table 1. The predicted distance, Z(τ), that a vortex pair with given Fr, Re, and σ(0)/b0 will
propagate before the primary vortices begin to diffuse into one another. Note that these predictions
are made assuming that the flow remains laminar for all time.

The vortex cores will come into contact and diffuse into one another when
2
√

2 σ(τ) = b(τ). (Although σ has been used as a core size,
√

2 σ is a better effec-
tive core size in terms of how much the vortices overlap.). Thereafter, the primary
vortices begin to lose their circulation, and the acceleration ceases. The value of τ
must be found numerically, after which a prediction can be made for how far a vortex
pair will propagate before the primary vortices begin to diffuse into one another.
Including the time offset, this distance is

Z(τ) =
Γ0

(2πC)1/2Nb0

sinh((C/2π)1/2N(τ− 2)) + 2W0. (3.12)

Values of Z(τ) for different values of Fr, Re, and σ(0)/b0 are shown in table 1.
The higher values of Re and the smaller value of σ(0)/b0 are included to give a sense
of the variability of the results. The simple model leading to (3.12) does not include
other effects such as turbulence that might prevent the vortex pair from propagating
such extreme distances. Indeed, the laboratory results of Tomassian (1979) indicate
that turbulent effects result in a rapid end to the acceleration phase of the vortex pair.
Nonetheless, note that at the largest value of σ(0)/b0, an increase in Re by as much as
two orders of magnitude gives an increase in Z(τ) of only 15− 100%, depending on
the value of Fr. In our simulations, the distances that the Fr = 2, 4, and 8 vortex pairs
with Re = 1000 and σ(0)/b0 = 0.125 propagate before viscous processes begin to play
a visible role (judged by the change in curvature of the trajectories displayed in figure
6) are roughly 6.4, 10.8, and 16.2 (or roughly 2.4, 2.0, and 1.5 in the re-normalized
distances in figure 6), respectively. These observed values agree with the predictions
shown in table 1 within a few percent.

While it is possible to predict when the acceleration phase of a vortex pair will end,
and how far the vortex pair propagates by that time, it is more difficult to predict how
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much further the vortex pair will propagate before its progress is completely halted.
This is made difficult by the possibility of instability, as will be discussed in § 4; such
instabilities lead relatively quickly to the final destruction of the primary vortices.

3.3. Flows dominated by buoyancy

We now discuss simulations of vortex pairs in the linear regime (Fr < 1). For such
values of Fr, buoyant processes are more important than advective processes. The
evolving flow spreads out to a greater degree in the horizontal direction and exhibits
smaller vertical excursions. Accordingly, the computational domain width is increased
to 12b0 for the simulations discussed in this subsection, while the domain height is
decreased to 12b0. We begin with the Fr = 1/8 case and continue with comparisons
of our results with the predictions of Saffman’s model.

3.3.1. Upwards-propagating vortex pair at Fr = 1/8

We first consider the evolution of an upwards-propagating vortex pair with
Fr = 1/8 and Re = 1000. Contours of vorticity detailing the evolution of the
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Figure 7. Contours of vorticity for an upwards-propagating vortex pair having Fr = 1/8 and
Re = 1000. Contour levels are at ±10,±20,±30, etc., and all regions enclosed by negative contours
are shaded.

flow through the first two buoyancy periods (TB = 2π/N = 2πFr = 0.8) are shown
in figure 7. Initially, the evolution resembles that of the other vortex pairs we have
discussed: counter-sign baroclinic vorticity forms around the primary vortices due to
the horizontal density gradients that result from the vortices’ initial flow field. How-
ever, the advective time scale is now significantly larger than the buoyancy time scale,
and so the amplitude of the counter-sign vorticity grows to be competitive with the
primary vortices since the locations of the baroclinic source remain in virtually fixed
positions for roughly the first half of a buoyancy period (t ' 0.4). The flow field of
the baroclinic vorticity prevents the initial vortex pair from advecting in the vertical
direction by a significant amount and also drives the primary vortices apart during the
second half of the buoyancy period. Additional vorticity forms baroclinically about
these baroclinic regions of vorticity, and by the end of the second buoyancy period
(t ' 1.6), the flow displays the pattern of gravity wave radiation from a localized
source.
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When buoyancy dominates over advection, the fluid equations are nearly linear,
and perturbations may be described in terms of linear gravity waves. The relatively
heavier/lighter fluid initially displaced upwards/downwards by the flow field of the
vortex pair relaxes back downwards/upwards due to buoyancy, overshooting its
original position and supplying the forcing for gravity wave radiation.

Density contours describing the evolution of the flow through the first two buoyancy
periods are shown in figure 8. Through the first half-buoyancy-period (t ' 0.4), there
is uplifting/downwelling of heavier/lighter fluid by the flow field of the vortex pair.
Thereafter, the motion reverses so that heavier/lighter fluid sinks/rises. This process,
which is essentially gravity wave radiation, continues to alternate with a frequency
near the buoyancy period. By the end of the second buoyancy period (t ' 1.6), the
peaks and troughs of the density contours are arranged in a fan-like pattern indicating
gravity wave radiation at a range of frequencies.

Since this simulation takes place in a more nearly linear regime, it is useful
to consider how well the evolution is described in terms of linear gravity waves.
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Figure 8. Contours of the density in the evolution of an upwards-propagating vortex pair having
Fr = 1/8 and Re = 1000. The density contours have a spacing of 0.074, and all regions where the
vertical velocity is negative are shaded.

Assuming that there is no mean horizontal or vertical flow, and that diffusive processes
are insignificant over the buoyancy time scale, the thermal equation gives

∂ρ′

∂t
= w′

∂ρ̄

∂z
, (3.13)

where variables are expanded into mean (overbar) and perturbation (primed) quanti-
ties. If the perturbation quantities ρ′, v′, and w′ are of the form ei(ky+mz−γt) (where γ is
the frequency and k and m are the horizontal and vertical wavenumbers), then (3.13)
becomes

ρ′ =

(
−i

γ

ρ̄N2

g

)
w′. (3.14)

The i in (3.14) expresses the quadrature relationship between w′ and ρ′: the maxima
(minima) of ρ′ trail the maxima (minima) of w′ in time by 90◦ of phase.
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Figure 9. The vertical position (a) and the separation distance (b) as functions of time for vortex
pairs with Re = 1000 and Fr = 1, Fr = 1/2, Fr = 1/4, and Fr = 1/8. The curves are compared to
the expectations of the Saffman and Crow models.

Returning to figure 8, the contours of the density field are overlaid with shading
where the value of the vertical velocity is negative. By the end of the second buoy-
ancy period, the relationship between the vertical velocity and the density is in good
agreement with that for linear wave propagation, apart from the smallest-scale struc-
tures near the initial vortex position. In particular, note that the region of minimum
vertical velocity that is to the right of and above the initial vortex pair position is
trailing (in space) the region of maximum ρ′ that is centred on a line connecting
the troughs of the total density. Similar correlations are also seen in the three other
quadrants, implying the outward radiation of internal gravity waves excited by the
initial vortex pair. At smaller Froude numbers, linear gravity wave theory will provide
an increasingly accurate description of these dynamics.

3.3.2. Other linear values of Fr and comparison to the predictions of Saffman’s model

The vertical positions and separation distances of vortex pairs with other values of
Fr but all with Re = 1000 are shown in figure 9. To compare the different curves with
each other and with the predictions of the models, re-normalized heights and time
are used as before. As Fr decreases, the increasing importance of buoyancy results
in an increasingly strong baroclinic source of vorticity, and in an increasingly rapid
growth in circulation of the baroclinically generated regions of vorticity. Each of the
trajectories in figure 9 is shown only as long as the original vortices dominate their
surroundings.



Dynamics of counter-rotating vortex pairs in stratified and sheared environments 213

First, consider the evolution of the Fr = 1 vortex pair. The separation distance
increases only slightly during the two-advective-time-unit adjustment phase observed
in the nonlinear regime. The criteria of Saffman’s model are met, and so the ver-
tical progression of the vortex pair agrees well with the model’s prediction during
this portion of the evolution. After roughly two advective time units, however, the
separation distance decreases with time, and Saffman’s model no longer applies. In
this Fr = 1 case, the baroclinically generated regions of vorticity are sufficiently
strong to advect the primary vortices together, but they are not sufficiently strong
to significantly affect the vertical migration of the primary vortices. The charac-
ter of the further evolution is in good agreement with the predictions of Crow’s
model.

Now consider the evolutions of the vortex pairs with smaller values of Fr. As before,
an adjustment phase occurs, during which the separation distance of the vortex pairs
remains fixed, but now the adjustment phase lasts only about 1/4 of an advective
time unit, and its duration decreases (in advective time units) as Fr is decreased.
As before, in re-normalized time units, the separation distance remains constant for
larger Nt as the value of Fr is decreased, and also increases less sharply after the
adjustment period ends.

The criteria of the Saffman model are met during this adjustment phase, and the
vertical progressions of the linear regime vortex pairs are in excellent agreement
with the model predictions during this time. Moreover, the character of each of the
trajectories continues to be in good agreement with the prediction of Saffman’s model
even when the separation distance increases by as much as 50% (see the Fr = 1/2
curves). When the separation distance increases by more than 50%, however, the
vertical progression of the vortex pair no longer agrees with Saffman’s model. In this
case, the vortex pair remains at a nearly constant vertical position while its separation
distance continues to increase, and the long-term rebounding motion predicted by
Saffman’s model is not observed. The agreement with Saffman’s model gets better with
decreasing Fr, because the separation distance of the vortex pair increases less as Fr
decreases, but the vortex pair does not dominate the flow for as long a time. Finally,
the long-term rebounding motion (of the original vortices) predicted by Saffman’s
model does not occur.

To help understand why the separation distance of linear vortex pairs increases with
time (after the end of the adjustment phase), contours of vorticity for the evolution
of the Fr = 1/4 vortex pair during the first buoyancy period are shown in figure
10. Initially, the distributions of the two baroclinically generated regions of vorticity
around each vortex are nearly symmetrically arranged. However, the two regions
growing between the primary vortices quickly increase in strength to the point where
they have significant advective effects on one another. By t ' 0.8 (one half of the
buoyancy period), these inner regions of baroclinically generated vorticity have largely
advected one another away from the primary vortices, while the regions outside the
primary vortices continue to grow in strength and retain their positions relative to
the primary vortices. The overall effect of these outer regions of baroclinic vorticity
is to advect the primary vortices back downwards and away from one another. By
t ' 1.2, these outer regions have increased in strength to the point where each of
the primary vortices re-pairs with one of them, and the original vortices propagate
back downwards with their separation distance increasing. The separation distance
increases in this manner for all vortex pairs with initial Froude number Fr 6 1/2,
in contrast to the decreasing of the separation distance for vortex pairs with initial
Froude numbers Fr > 1.
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Figure 10. For caption see facing page.

4. Instabilities of the vortex pair and its wake
Up until now we have presented results for initial conditions with strict symmetry

about the centreline. Since the equations of motion admit and conserve this symmetry,
these solutions represent only a subset of the possible flow evolutions. We now
discuss results in which asymmetry is introduced to the flow by the perturbations
described in § 2.2. Two distinct instabilities occur: one of the jet of fluid comprising
the baroclinically generated wake of the vortex pair, and one of the primary vortices
themselves. Although numerical constraints currently prevent the simulation of a
turbulent vortex pair, these results hint at how the evolution of a vortex pair might
be different in a more realistic turbulent fluid.

4.1. Instability of the vortex pair

We first consider the instability of the primary vortex pair, the ‘vortex head instability’,
which is manifested in a sinuous propagation path of the vortex pair. Figure 11
displays contours of vorticity for the case Fr = 2 and Re = 1000, where asymmetry
is seeded in the initial condition. By t = 9, the evolution is quite distinct from the
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Figure 10. Contours of vorticity for an upwards-propagating vortex pair having Fr = 1/4 and
Re = 1000. Contour levels at ±10,±20,±30, etc. show the distribution of high-magnitude vorticity,
while additional contour levels at ±2,±3,±4 and ±5 illustrate the distribution of low-magnitude
vorticity, and all regions enclosed by negative contours are shaded.

symmetric case (see figure 3). The vortices deviate from their straight upwards path
into a sinusoidal motion of growing amplitude. The vortex sheets comprising the
baroclinically generated wake detrain from the vortex pair in the same pattern, and
vortex sheet dynamics amplify their sinusoidal perturbation. Note that organized
vorticity remains near the maximum height attained by the vortex pair as late as
t = 15, in contrast to the symmetric case.

We examine this instability by studying one of its early iterations. Figure 12 shows
a magnification of the region containing the vortex pair for times from t = 6.75 to
t = 8.25. Note the change in structure of the vortices as time progresses. At t = 6.75
and t = 7.25 more vorticity is being detrained from the negative vortex than from the
positive vortex (visible in the middle of the wake just behind the vortex pair). Also,
at t = 7.25, the negative vortex is slightly weaker than the positive vortex, and the
vortex pair rotates about the positive vortex because of this unequal strength (note the
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very slight curve of the path). At t = 7.75, the positive vortex is being preferentially
detrained into the wake; it is also weaker than the negative vortex and the pair’s
path curves in the other direction (see the path at t = 8.25). Finally, at t = 8.25 the
detrainment again reverses, and more vorticity is being detrained from the negative
vortex than from the positive vortex. As the evolution proceeds after t = 8.25, the
amplitude of the oscillation increases and the wavelength decreases, possibly because
of the decreasing circulation of the primary vortices.

Evidence of this instability appears to be present in the results of Schilling et al.
(1996). Note in their figure 4 e, the sheared state of the positive vortex and the fact that
the negative vortex is stronger and is apparently rotating the pair’s orientation. The
instability does not appear in the cases shown by Robins & Delisi (1990) or by Spalart
(1996), due to the symmetry assumptions made in each case. To our knowledge, this
instability has also not been observed in two-dimensional laboratory experiments,
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Figure 11. As in figure 1, but for the case in which an asymmetric perturbation is seeded in the
initial conditions.

although it is not clear why. In unsheared fluids, the vortex head instability does
not develop until the vortices have diffused sufficiently for their circulation to be
detrained into the baroclinically generated wake. Such a process takes longer at the
higher values of Re in laboratory experiments so that other processes may complicate
the flow before the vortex head instability can begin. Another possible explanation
lies in the difficulty of observing the flow’s perturbations. In particular, it is difficult
to observe the weak secondary vorticity with current particle image velocimetry (PIV)
techniques (Fincham & Spedding 1997).

In our simulations, the vortex pair does not survive coherently for more than one
or two repetitions of the instability oscillation after it has reached a visible amplitude.
Eventually one of the vortices is weakened to the point where it becomes too sheared
out by the flow of the wake and the other vortex to recover (in our case, by t ' 8.5,
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Figure 12. As in figure 1, with a more magnified view of the evolution of the vortex pair as it
undergoes the vortex head instability.

the negative primary vortex is severely depleted, leading to the rotation seen at
t = 9 in figure 11). The remaining vorticity is sufficiently weak that it is advected
by the baroclinically generated wake vorticity in complicated ways. Generally, all
of the initial primary vorticity is either detrained downwards with the baroclinically
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generated wake, or combines locally with the secondary vorticity. In particular, none
of the regions of vorticity near z = 7 at t = 15 in Fig. 11 are solely remnants of the
primary vortices.

During the instability, the baroclinically generated vortex sheets roll up where
they are the most strained (e.g. the positive roll of vorticity forming near z = 7
at t = 12 in figure 11). The additional vortices that form in this manner generally
detach themselves from the downwards motion of the baroclinic jet, and move in
ways that are difficult to predict. Since the baroclinic source of vorticity becomes
larger the further the vortex pair propagates, the vortices forming near the top of the
baroclinically generated sheets of vorticity are the strongest. These vortices interact
with the vortices formed from the last interactions of the primary vortices and the
local secondary vorticity, leading to a complex flow near the maximum propagation
distance of the vortex pair. The continued presence of concentrated vorticity near this
location is in contrast to the symmetric case (see figure 3).

The vortex pair is not susceptible to the vortex head instability until the vortices
have diffused sufficiently for their circulation to be detrained. In § 3.2.3 we derived an
approximate value for the distance a vortex pair propagates before this occurs. While
undergoing the instability, the vortex pair spends a good deal of time propagating
horizontally, and so it does not propagate as far vertically as it would if it had
not undergone the instability. Therefore, this instability strongly limits how much
further the weakening primary vortex pair will propagate after the viscous time
scale is reached. At the same time, it leads to the formation of a complex flow
that remains near the maximum height attained by the vortex pair and spreads out
horizontally.

Finally, we consider the effect on the vortex head instability of changing Fr and/or
Re. Contours of vorticity summarizing the evolution of a vortex pair with Fr = 2
and Re = 1500 are shown in figure 14 in § 4.2. At this higher value of Re, the
more concentrated sheets of baroclinically-generated wake vorticity (see figure 4)
result in the vortex head instability reaching a visible amplitude more quickly, and
consequently reaching a ‘saturation’ amplitude more quickly (at which point the
primary vortices detach from the wake vorticity). Close examination of the vorticity
contours reveals that the primary vortices retain more of their circulation after this
occurs than in the lower-Re case, and that the vortices which form from the strained
vortex sheets also contain more vorticity at this higher Re. The additional vorticity
contained in the vortices near the maximum height attained by the vortex pair
results in an increasingly complex flow with increasing Re. Changing the value of
Fr (within the nonlinear regime) affects the time scale of the instability. At higher
Fr, the baroclinic source of vorticity is weaker, and the strength of the baroclinically
generated wake vorticity is less; their weaker strength results in slower growth of the
instability.

4.2. Instability of the jet wake

The baroclinically generated wake of a vortex pair is also susceptible to a jet instability.
The flow in the wake is a vertical jet of fluid, an average profile of which is shown
in figure 13 for the case Fr = 2 and Re = 1500. The profile is slightly asymmetrical
because an asymmetry is seeded in the initial condition. The vertical velocity of a
similar jet of fluid, the Bickley jet, with profile

W (y) = −A sech2[D(y − c)] + B, (4.1)
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Figure 13. The solid line shows the average vertical velocity of the baroclinically generated
wake (for the case Fr = 2 and Re = 1500, with an asymmetric perturbation in the initial
conditions) at t = 9. The dotted line shows the Bickley jet with a velocity profile given by
w = −1.42 sech2(10(y − 3.083)) + 0.04.

and with A = 1.42, D = 10, c = 3.083, and B = 0.04 is also shown in figure 13.
Ignoring gravity, viscosity, and the finite vertical extent of this jet, the growth periods
(e-folding time scales) for the sinuous and varicose modes of instability of the Bickley
jet are given by Drazin & Howard (1966). The fastest growing sinuous mode has a
wavelength λS = 6.98/D and a growth period TS = 6.21/(AD), and the fastest growing
varicose mode has a wavelength λV = 12.6/D and a growth period TV = 21.7/(AD).

Contours of vorticity spanning the time during which a sinuous mode instability
develops and grows to a critical amplitude are shown in figure 14. At t = 9 the jet
is quasi-uniform from z ' 1–6, but the instability gains a discernible amplitude by
t = 10 and leads to a separated, complex flow by t = 11. The observed wavelength
of this instability is 0.6, while the theory predicts the fastest growing sinuous mode
to have a wavelength λS = 0.7 and a growth period TS = 0.44. The wavelength
and growth period of the observations and theory agree to within roughly 15%. As
the value of Re is increased (within numerically attainable bounds), the observed
wavelength and growth period of this instability remain nearly fixed, while the
theoretical predictions change because the parameters A and D in (4.1) required to fit
the jet change. The parameterization changes because the increasing Re results in an
increasingly narrow jet with an increasingly large peak velocity. The change in A and
D results in the wavelength and growth period predicted by the theory decreasing
so that the simulations and the theory agree even better. This is not surprising as
the theory is inviscid and is more accurate at high Re. If Re were increased further,
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we expect that the thickness of this jet of fluid would continue to decrease, so that
both the growth period and the wavelength would decrease, leading to a more rapidly
emerging and more complex flow in the baroclinically generated wake of the vortex
pair.

Note that the theory predicts a growth rate over three times slower for the fastest
growing varicose mode of instability. As a general flow will have both symmetric and
antisymmetric perturbations, the sinuous mode of instability will generally appear
rather than the varicose mode. We have not observed the occurrence of a varicose
mode of instability (at Re which are numerically attainable), even when the initial
conditions have been seeded with only symmetric perturbations (see Garten 1997 for
further discussion on this point).

5. Shear effects
We now consider counter-rotating vortex pairs in stratified and sheared environ-

ments. We take the mean shear to have uniform slope throughout the region of
interest, and to be parameterized by the Richardson number, Ri, as defined in § 2.2
(V (z) = NRi−1/2(z−Lz/2)). In what follows, the vortex with the same (opposite) sign
of vorticity as the mean shear will be called the same-sign (opposite-sign) vortex,
and is also known in the literature (see e.g. Lissaman et al. 1973) as the downstream
(upstream) vortex. A trivial effect of the mean shear is to advect the vortex pair
horizontally as it propagates vertically. A more subtle effect is that the opposite-sign
vortex loses its circulation more quickly than the same-sign vortex due to viscous
diffusion and detrainment of vorticity. The vortex pair then rotates with the same
rotational sense as the mean shear. The additional presence of stratification can cause
the vortex pair to rotate earlier in its evolution, and with a rotational sense opposite
that of the shear flow, an effect that is intimately connected to the asymmetric distri-
bution of the flow’s streamlines. This earlier rotation of the vortex pair can result in
a solitary vortex emerging more quickly than in the unstratified case.

5.1. Review of theory

Lissaman et al. (1973) have presented a theory for the effect of a uniform shear on
the motion of a vortex pair, which we re-state here in a slightly different form. It
relies on the asymmetric distribution of the flow’s streamlines.

Consider the initial distribution of streamlines for a counter-rotating vortex pair
with a mean shear, in the reference frame moving with the vortex pair. Defining the
streamfunction ψ(y, z) such that v = ∂ψ/∂z and w = −∂ψ/∂y, we integrate (2.9) to
obtain

ψ(y, z, t = 0) = σ2ω0

[
ln

(
r2

r1

)
+ Ei

(
−r2

1

2σ2

)
−Ei

(
−r2

2

2σ2

)]
+W0y+

1

2

(
∂V

∂z

)
z2, (5.1)

where r1 = [(y − y1)
2 + (z − z1)

2]1/2, r2 = [(y − y2)
2 + (z − z2)

2]1/2, and Ei(x) is the
exponential integral (Abramowitz & Stegun 1964). The first term on the right-hand
side of (5.1) is the velocity field of the vortex pair itself†, the second term is due
to the shift to the moving reference frame of the vortex pair, and the third term is
the additional contribution of the mean shear flow (where ∂V/∂z is assumed to be
constant).

† To a very good approximation, the streamfunction for a pair of point vortices may be substituted
for this streamfunction.
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Figure 14. For caption see facing page.

Contours of the streamfunction for an upwards-propagating vortex pair with no
mean shear are shown in figure 15 (a). The streamline that separates the closed
streamlines from the open streamlines is called the separatrix. Apart from diffusion,
fluid within the separatrix is carried with the vortex pair (within the two re-circulation
cells), while the fluid outside the separatrix is not. As the vortex pair evolves, the
streamfunction changes somewhat, but the overall characteristics of the streamlines
remain.

Contours of the streamfunction for an upwards-propagating vortex pair with mean
shear given by ∂V/∂z = 1/2 (corresponding to Fr = 2 and Ri = 1) are shown in
figure 15 (b). An asymmetry is apparent in these streamlines: the re-circulation cell
of the (left-hand) opposite-sign vortex is smaller than in the unsheared case, and the
re-circulation cell of the (right-hand) same-sign vortex is larger than in the unsheared
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Figure 14. As in figure 4, but for the case in which an asymmetric perturbation is seeded in the
initial conditions.

case. The vortices will diffuse outwards as they advect upward, and even though the
rates of diffusion are the same, the opposite-sign vortex will diffuse to the boundary
of its smaller re-circulation cell more quickly than the same-sign vortex. When that
occurs, some of the vorticity of the opposite-sign vortex will be detrained, and the
opposite-sign vortex will become weaker than the same-sign vortex. The opposite-
sign vortex, being weaker, will then rotate about the same-sign vortex, with the same
rotational sense as the background shear flow.

5.2. Upwards-propagating vortex pair in an unstratified fluid with ∂V/∂z = 1/2

We first consider the evolution of an upwards-propagating vortex pair in a sheared,
constant-density fluid, with Re = 1000. The orientation of the shear is defined such
that the horizontal velocity increases to the right with height (∂V/∂z > 0); therefore,
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Figure 15. Streamlines of a counter-rotating vortex pair having Fr = 2 in (a) the unsheared and
(b) sheared (Ri = 1) cases. In the sheared case, the background shear flow is defined such that the
horizontal velocity increases to the right with height. Note that the streamlines are shown in the
moving reference frame of the vortex pair.

the vorticity of the left (right-hand) vortex has the opposite (same) sign of vorticity
as the background shear.

Contours of vorticity for the evolution are shown in figure 16. Here, as in all
subsequent plots of sheared evolutions, the horizontal advection of the vortex
pair by the shear is subtracted to give a common frame of reference. At early
times, the vortex pair propagates upward in a straight line. However, by t ' 8,
the vortices have diffused outwards sufficiently to encounter the boundaries of their
re-circulation cells. The opposite-sign vortex diffuses outwards to the boundaries of
its smaller re-circulation cell faster than the same-sign vortex, and so more of its
circulation is detrained behind the vortex pair (too small to see in the contours
shown).

By t ' 16, this asymmetry in the strength of the vortices results in the stronger same-
sign vortex rotating the weaker opposite-sign vortex about itself, while the vortices
continue their upward propagation. At later times, the vorticity of the opposite-sign
vortex becomes more spread out (see t = 20). The flow then evolves to where the
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Figure 16. Contours of vorticity for an upwards-propagating vortex pair in an unstratified, sheared
(∂V/∂z = 1/2) fluid, with Re = 1000. Contour levels at ±10,±20,±30, etc. show the distribution
of high-magnitude vorticity, while contour levels at ±2,±3,±4 and ±5 illustrate the distribution of
low-magnitude vorticity, and all regions enclosed by negative contours are shaded. The vorticity at
each time has been shifted in the horizontal direction to the centre of the domain.

vortices are again of almost equal strength (see t = 24). However, they are further
apart than their initial separation distance, their mutual advection is no longer purely
in the vertical direction, and some excess negative vorticity has been detrained. Thus,
we find that the rotation of the vortex pair in an unstratified, sheared fluid does not
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Figure 17 (a, b, c). For caption see facing page.
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Figure 17(d). Contours of (a, b) vorticity, (c) the baroclinic source of vorticity, and (d) density for an
upwards-propagating vortex pair with Fr = 2, Ri = 1, and Re = 1000. The quantities are shifted in
the horizontal direction for display purposes. Primary contour levels of the vorticity are at intervals
of 10, though the zero-line is not shown. Additional contour levels are shown at ±2,±3,±4 and ±5
to illustrate the distribution of vorticity with lower magnitudes, and all regions enclosed by negative
contours are shaded. The contour levels of the baroclinic source are the same as for the vorticity,
while the contour levels of the density are at intervals of 0.296.

occur until after a viscous time scale has been reached, and that a solitary vortex
does not emerge after several multiples of this time scale.

A comparison of the distribution of the vorticity at times t = 20 and t = 24 shows
the hazard of determining the character of the evolution of a sheared vortex pair
by only considering widely spaced times. If the distribution of vorticity were only
considered at t = 20, then one might conclude that the opposite-sign vortex is stronger
than the same-sign vortex, and is dominating the evolution of the flow. However, by
considering nearby times in the evolution (e.g. t = 24), this interpretation is shown to
be incorrect.

5.3. Upwards-propagating vortex pair with Fr = 2 and Ri = 1

We now consider the evolution of an upwards-propagating vortex pair with Fr = 2
and Ri = 1 (with the same mean shear as in the unstratified case). Here again the
left (right)-hand vortex will be referred to as the opposite-sign (same-sign) vortex.
Contours of vorticity detailing the early evolution of the vortex pair are shown in
figure 17 (a, b). In the presence of both stratification and mean shear, an asymmetry
in the distribution of vorticity begins to appear quickly (t ' 2) and grows with time
in both magnitude and extent.

To determine the cause of this asymmetry, the contours of the baroclinic source
of vorticity are shown in figure 17 (c). Relatively more negative vorticity (contour
levels −2, −3, −4, −5) is generated around the left-hand positive vortex than positive
vorticity (contour levels +2, +3, +4) around the right-hand negative vortex. This
asymmetry in the baroclinic source results from an asymmetry in the horizontal
density gradients. The horizontal gradient of density to the left of the positive vortex
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is stronger than that to the right of the negative vortex, as shown by the closer
packing of density contours in figure 17 (d).

The closer packing of density contours on one side of the vortex pair is a result of
faster advection by the flow field. To understand this, we return to the streamlines of
the initial Gaussian vortex pair in the imposed mean shear shown in figure 15 (b). The
vertical velocity of this flow is symmetric about the centre of the vortex pair (since the
additional flow due to the mean shear is strictly horizontal). However, since the sepa-
ratrix is not symmetric about the centre of the vortex pair, the vertical velocities on the
left- and right-sides of the separatrix are different. In particular, the magnitude of the
vertical velocity at the separatrix is larger on the left-hand side of the vortex pair. As
shown in figure 17 (d), this larger vertical velocity wraps density contours more closely
together about the (left-hand) opposite-sign vortex, which in turn leads to the greater
baroclinic production of vorticity to the left of the vortex pair, as shown in figure
17 (c). This asymmetry in the baroclinic source of vorticity occurs for all Fr and Ri.

The advective effects of the asymmetric vorticity distribution cause the primary
vortices to tilt with a sense opposite to the rotation of the mean shear. Specifically,
the counter-clockwise flow field of the stronger negative vorticity to the left of and
below the (left-hand) opposite-sign primary vortex suppresses the upward motion of
the opposite-sign vortex relative to that of the (right-hand) same-sign primary vortex.
This tilting is difficult to discern, but at t = 3.5 (figure 17 b) the (right-hand) same-sign
vortex is slightly higher than the (left-hand) opposite-sign vortex.

Contours of vorticity at more advanced times are shown in figure 18, illustrating
that the tilting is only temporary. At t = 5.0, the (left-hand) opposite-sign vortex
has been weakened relative to the same-sign vortex; the advective effects of the
asymmetric, baroclinically generated wake vorticity have spread out the (left-hand)
opposite-sign vortex (seen in the wake right behind the vortex pair). The (right-hand)
same-sign vortex is then stronger than the (left-hand) opposite-sign vortex, so that
the vortices now tilt with the same rotational sense as the mean shear. By t = 6.0,
however, the (right-hand) same-sign vortex has been preferentially detrained, and the
direction of tilting again reverses.

This process has the same morphology as the vortex head instability discussed in
§ 4.1 (compare figure 18 to figure 12), and as before the process does not survive
many iterations once it becomes visible. However, this evolution departs from the
unsheared case in that the instability appears sooner and proceeds at a faster rate,
due apparently to the asymmetry present at early times. The initial asymmetry also
apparently results in the vortex pair surviving a smaller number of iterations of
the instability and in the vortex pair separating from the wake vorticity. When the
vortex pair separates, the same-sign vortex is slightly stronger than the opposite-
sign vortex, so the opposite-sign vortex rotates around the same-sign vortex in the
same sense as the rotation of the mean shear. The vortex pair continues to rotate
in this direction and intersects the baroclinic wake; at t = 10.0, the major portion
of remaining concentrated opposite-sign vorticity is actually from the baroclinically
generated wake vorticity. At this point, one might say that a solitary vortex has
emerged (with the same sign as the background shear), and that it has emerged on
a much faster time scale than the viscous time scale on which the initial rotation
occurred in the unstratified case.

Since the baroclinic source of vorticity is asymmetric, the vortex sheets comprising
the baroclinically generated wake are also asymmetric. As time progresses, these
sheets roll up into weak but coherent concentrations of vorticity where they are the
most strained (see near (y, z) = (2.5, 6) at t = 10). Because of the asymmetry in the
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Figure 18. As in figure 17 (a, b), but for more advanced times in the flow of the
upwards-propagating vortex pair having Fr = 2, Ri = 1, and Re = 1000.

vortex sheet strength, the long-term flow is dominated by vortices with the same sign
as the background shear flow.

The asymmetry in the strength of the vortex sheets also causes the concentrated
region of negative vorticity at the lower end of the vortex sheets to be stronger than
the concentrated region of positive vorticity (e.g. t = 7.0). These regions of vorticity
consequently rotate around in the same sense as the rotation of the background shear,
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Figure 19 (a, b). For caption see facing page.

and this motion apparently prevents vorticity from penetrating below the initial vortex
pair position (in contrast to the unsheared case – see figure 3).

5.4. Consequences of changing Fr, Ri or Re

We now summarize the possible consequences of changing the values of Fr, Ri and
Re on the evolution of vortex pairs in a stratified and sheared fluid. Contours of
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Figure 19. As in figure 17 (a, b), but for the flow of vortex pairs with four different sets of parameters:
(a) Fr = 2 and Ri = 1, (b) Fr = 2 and Ri = 4, (c) Fr = 2 and Ri = 16, and (d) Fr = 4 and Ri = 1,
all with Re = 1000.

vorticity for Re = 1000 but for different Fr and Ri are displayed in figure 19 for a
part of the evolution.

Consider first the implications of changing the strength of the mean shear while
leaving all other parameters fixed. If the shear is weakened (Ri is increased), then
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the asymmetry in the flow due to the shear (see figure 15 b) is less pronounced, the
asymmetry in the baroclinic generation of vorticity (see figure 17 c) is less severe, and
the asymmetry in the vorticity field itself is not as large (compare the different cases
shown in figure 19 at t = 5). The initial vortex tilting in the rotational sense opposite
that of the mean shear is thus decreased, possibly to zero. With less initial tilting of
the vortex pair, the vortex head instability is not given as large an initial amplitude.
Although the instability process is still initiated by the preferential detrainment of
circulation from the (left-hand) opposite-sign vortex (compare the three cases in
figure 19 at t = 5), the smaller initial amplitude and delayed onset result in the
instability not reaching the saturation amplitude until later in time. This can lead to
two possible results. First, it may simply take longer for the primary vortices to detach
themselves from the wake vorticity (which occurs when the instability reaches the
saturation amplitude), and they will not have retained as much of their circulation,
as occurs in the case Fr = 2 and Ri = 4 (not shown in figure 19). Alternatively,
the instability process may be delayed so long that the vortices are too severely
depleted and never detach from the wake, as in the case Fr = 2 and Ri = 16 (as
well as Fr = 4 and Ri = 1). It therefore becomes less likely for a solitary vortex to
rapidly emerge as Ri is increased for a fixed value of Fr. The extreme case Ri → ∞
corresponds to the unsheared cases for which we observed the vortex head instability.
There, the original vortices were severely depleted and never detached from the wake
vorticity, and equal amounts of both signs of vorticity were present at late times in
the evolution.

On the other hand, if the shear is made stronger (Ri is decreased) at a fixed value
of Fr, then the asymmetries in the flow become more pronounced, and the vortex
head instability is initiated with a larger initial amplitude. The more rapid attainment
of the saturation amplitude results in the vortices detaching from the wake vorticity
before losing as much of their circulation, and the subsequent dynamics lead to the
more rapid emergence of a solitary vortex. We conclude that there are not two distinct
regimes of behaviour delineated by a critical value of Ri, but rather a continuum
depending on the time taken for a solitary vortex to emerge. Of course, this amount
of time approaches infinity for some sets of parameters, meaning that a solitary vortex
never emerges.

This behaviour will also depend on the value of Fr. As Fr is increased, stratification
becomes less important, and, although the shear will still cause an asymmetry in the
baroclinic source of vorticity, the baroclinically generated vorticity is no longer as
strong as at larger values of Fr (compare the first and fourth cases shown in figure
19). Therefore, a much stronger shear (smaller value of Ri) is needed to produce
the same degree of tilting of the vortices and the same strong initial amplitude of
the vortex head instability. Conversely, as Fr is decreased, the baroclinic source of
vorticity becomes stronger, and small asymmetries in the flow due to the shear will
have larger effects. Therefore, a weaker shear (larger value of Ri) can have the same
effect when Fr is decreased.

Earlier comparisons (§ 3.2.2) between simulations performed for different Re indi-
cate how these stratified and sheared flows will change if the value of Re is increased.
In the sheared cases where tilting of the vortex pair against the shear occurs, we find
that the tilting continues until the (left-hand) opposite-sign vortex is sufficiently weak
compared to the (right-hand) same-sign vortex that the vortex pair tilts back in the
other direction. At larger Re (and/or smaller σ(0)/b0), the vortices diffuse outwards
more slowly. Therefore, the tilting of the vortex pair should continue longer, as it
takes longer for the (left-hand) opposite-sign vortex to lose a significant part of its
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circulation. Another way to state this is that as Re is increased at a fixed value of Fr,
a weaker shear (larger Ri) will tilt the vortex pair and initialize the instability process
as quickly as a stronger shear (smaller Ri) at a lower Re.

6. Summary
In this paper we present and analyse numerical simulations of vertically propagating

vortex pairs in stratified and sheared fluids. We discuss the complicated nature of
the resolution requirements for the simulations and the difficulty in determining
an objective measure for the quality of resolution. To span a range of dynamical
responses, we consider the effects of stratification with and without a uniform shear,
and with Froude numbers from 1/8 to ∞ and Richardson numbers from 0 to ∞.
Additionally, two different Reynolds numbers are considered.

At all Froude numbers, density stratification leads to baroclinic sources of counter-
sign vorticity between and outward from the rising vortex pair. The effects of this
baroclinic vorticity, however, are highly dependent on the Froude number and the
mean shear.

In the unsheared simulations, for the cases Fr > 1, the relatively strong advection
of the primary vortex pair couples with the baroclinic generation of wake vorticity,
leading to the formation of trailing vortex sheets. During an initial adjustment phase
of two advective time units (independent of Fr), the criteria of Saffman’s theory
are met, and the trajectories of the vortex pairs follow Saffman’s predictions. After
this adjustment phase, the advective effect of the accumulated counter-sign vorticity
around and trailing each of the primary vortices serves to drive the primary vortices
together. The vortices accelerate, and their trajectories are then consistent with the
predictions of Crow’s theory. At later times, viscous diffusion intervenes, made stronger
by the lower values of Re that are numerically tractable. We present a prediction for
how far a two-dimensional vortex pair propagates before viscous processes become
dominant, and verify that it is confirmed by the simulation results.

For cases with smaller Froude numbers (Fr 6 1/2), baroclinic generation of
vorticity along with the relatively weak advection of the initial vortex pair leads to
more localized regions of secondary vorticity. The separation distance of the vortex
pair remains constant during an early adjustment phase whose duration depends on
Fr. During this adjustment phase, the trajectories of the vortex pairs follow Saffman’s
predictions. In fact, the vertical position of the vortex pair remains consistent with
the prediction even when the separation distance increases by as much as 50%.
The concentrated regions of baroclinically produced vorticity result in the vortices
propagating away from one another, and not dominating the flow. At even lower
values of the Froude number (Fr 6 1/8), the flows are described increasingly well
by the linearized equations of motion, so that the evolution is approximately linear
gravity wave radiation from a localized source.

When asymmetry is seeded within the initial flow field, instabilities occur. The jet of
fluid comprising the baroclinically generated wake of the vortex pair is susceptible to
the sinuous mode of a jet instability. Theoretical predictions for the growth rates and
spatial scales of the instability modes of the Bickley jet were found to be within 15%
of those observed in the simulation for Re = 1000, and even closer for higher Re. The
sinuous mode in particular grows rapidly enough to reach a critical amplitude and
severely complicate the flow evolution.

The primary vortices themselves are susceptible to the vortex head instability, which
occurs after viscous diffusion makes possible the alternating detrainment of vorticity
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from each vortex. This instability prevents the vortex pair from propagating much
further once this stage in the evolution has been reached, and it also complicates the
flow. Concentrated vorticity remains near the maximum height attained by the vortex
pair very late into the flow evolution, in contrast to the cases in which this instability
was not observed.

In the unstratified but sheared case, the evolution of the vortex pair is in good
agreement with theory. The vortex pair is advected horizontally by the shear, inde-
pendent of its upwards propagation, until viscous diffusion leads to the preferential
loss of vorticity from the opposite-sign vortex. Consequently, the relatively stronger
same-sign vortex rotates the weaker opposite-sign vortex about itself with the same
rotational sense as the mean shear flow.

For sheared flows with stratification, the baroclinic source of vorticity is asymmetric
due to more rapid flow around the vortices on the (left-hand) upstream side of the
vortex pair. In the case Fr = 2 and Ri = 1, the advective effect of the asymmetrically
stronger counter-signed vorticity forming on the (left-hand) upstream side slightly
retards the motion of the (left-hand) opposite-sign vortex. However, the tilting of
the vortex pair with the rotational sense opposite to the mean shear results in a
preferential loss of circulation from the (left-hand) opposite-sign vortex. This in turn
causes the vortex pair to tilt back with the same rotational sense as the mean shear
flow. This process is the same as that for the vortex head instability, and it leads to
the emergence of a solitary vortex (with the same sign as the mean shear vorticity),
on a much faster time scale than viscous processes lead to the initial rotation of the
vortex pair in the unstratified case. A decrease in Ri at a fixed Fr or an increase in
Fr at a fixed Ri reduced the initial amplitude of the vortex head instability, resulting
in a solitary vortex emerging much more slowly, if at all. It is important to note that
when a solitary vortex is observed to emerge it does not completely dominate the flow
evolution (see e.g. Robins & Delisi 1990), and so there is some uncertainty in saying
that a solitary vortex has emerged at all (especially in the light of the reformation of
one of the vortices in figure 16).
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